$$ \boxed{ax^2 + bx + c \gt 0} $$ |
$$ \underline{\underline{\bullet \ a \neq 0}} $$ |
$$ \boxed{D = b^2 - 4\cdot a c} $$ |
$$ \underline{\underline{\circ \ D \gt 0}} $$ |
$$ x_{1,2} = \frac{-b \pm \sqrt{D}}{2\cdot a} $$ |
$$ x_1 \lt x_2 $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x \in \left(-\infty;\ x_1 \right) \cup \left(x_2;\ +\infty\right) $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x \in \left(x_1;\ x_2 \right) $$ |
$$ \underline{\underline{\circ \ D = 0}} $$ |
$$ x_1 = x_2 = \frac{-b}{2\cdot a} $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x \in \left(-\infty;\ x_1 \right) \cup \left(x_1;\ +\infty\right) $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x = \left\{\right\} $$ |
$$ \underline{\underline{\circ \ D \lt 0}} $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x \in \left(-\infty;\ +\infty \right) $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x = \left\{\right\} $$ |
$$ \underline{\underline{\bullet \ a = 0}} $$ |
○ lineární nerovnice |
$$ \boxed{ax^2 + bx + c \ge 0} $$ |
$$ \underline{\underline{\bullet \ a \neq 0}} $$ |
$$ \boxed{D = b^2 - 4\cdot a c} $$ |
$$ \underline{\underline{\circ \ D \gt 0}} $$ |
$$ x_{1,2} = \frac{-b \pm \sqrt{D}}{2\cdot a} $$ |
$$ x_1 \lt x_2 $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x \in \left(-\infty;\ x_1 \right\rangle \cup \left\langle x_2;\ +\infty\right) $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x \in \left\langle x_1;\ x_2 \right\rangle $$ |
$$ \underline{\underline{\circ \ D = 0}} $$ |
$$ x_1 = x_2 = \frac{-b}{2\cdot a} $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x \in \left(-\infty;\ +\infty \right) $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x = \left\{x_1 \right\} $$ |
$$ \underline{\underline{\circ \ D \lt 0}} $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x \in \left(-\infty;\ +\infty \right) $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x = \left\{\right\} $$ |
$$ \underline{\underline{\bullet \ a = 0}} $$ |
○ lineární nerovnice |
$$ \boxed{ax^2 + bx + c \lt 0} $$ |
$$ \underline{\underline{\bullet \ a \neq 0}} $$ |
$$ \boxed{D = b^2 - 4\cdot a c} $$ |
$$ \underline{\underline{\circ \ D \gt 0}} $$ |
$$ x_{1,2} = \frac{-b \pm \sqrt{D}}{2\cdot a} $$ |
$$ x_1 \lt x_2 $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x \in \left(x_1;\ x_2 \right) $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x \in \left(-\infty;\ x_1 \right) \cup \left(x_2;\ +\infty\right) $$ |
$$ \underline{\underline{\circ \ D = 0}} $$ |
$$ x_1 = x_2 = \frac{-b}{2\cdot a} $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x = \left\{\right\} $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x \in \left(-\infty;\ x_1 \right) \cup \left(x_1;\ +\infty\right) $$ |
$$ \underline{\underline{\circ \ D \lt 0}} $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x = \left\{\right\} $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x \in \left(-\infty;\ +\infty \right) $$ |
$$ \underline{\underline{\bullet \ a = 0}} $$ |
○ lineární nerovnice |
$$ \boxed{ax^2 + bx + c \le 0} $$ |
$$ \underline{\underline{\bullet \ a \neq 0}} $$ |
$$ \boxed{D = b^2 - 4\cdot a c} $$ |
$$ \underline{\underline{\circ \ D \gt 0}} $$ |
$$ x_{1,2} = \frac{-b \pm \sqrt{D}}{2\cdot a} $$ |
$$ x_1 \lt x_2 $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x \in \left\langle x_1;\ x_2 \right\rangle $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x \in \left(-\infty;\ x_1 \right\rangle \cup \left\langle x_2;\ +\infty\right) $$ |
$$ \underline{\underline{\circ \ D = 0}} $$ |
$$ x_1 = x_2 = \frac{-b}{2\cdot a} $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x = \left\{x_1 \right\} $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x \in \left(-\infty;\ +\infty \right) $$ |
$$ \underline{\underline{\circ \ D \lt 0}} $$ |
$$ \underline{\bullet \ a \gt 0} $$ |
$$ x = \left\{\right\} $$ |
$$ \underline{\bullet \ a \lt 0} $$ |
$$ x \in \left(-\infty;\ +\infty \right) $$ |
$$ \underline{\underline{\bullet \ a = 0}} $$ |
○ lineární nerovnice |